Proofs and Conversations

To appear in the AMS Early Career Notices in 2024

Proofs and Conversations

Talia Ringer *

May 17, 2024

My research is on making it easier to write formal,
machine-checkable proofs using special tools called
proof assistants. So of course, I love these tools, and
I want everyone to have a chance to use them. I am
just now noticing that I have been selling my love for
these tools to mathematicians the wrong way.

The sales pitch in my field is obvious. My work
is primarily in the field of formal verification: using
these tools to write machine-checkable proofs about
software systems. In my field, we really care about
our software being correctly implemented, down to
the tiniest details. Subtle mistakes in software sys-
tems can be catastrophic, expensive, and even fatal.
The most powerful way to avoid these mistakes is to
formally prove our software correct.

So for a long time, I told mathematicians that these
tools are great because they make it possible to have
full confidence in one’s results. The response to this
was often one of confusion. The normal way of do-
ing math has worked pretty well for most of history
(modulo the occasional surmountable crisis like Rus-
sell’s Paradox). Why go formal?

I can now see the right sales pitch to mathemati-
cians: formal proof has the potential to empower
collaboration at a scale never before seen in math-
ematics. For example, mathlib [mC20], the large for-
mal math library implemented in the proof assistant
called Lean, has had 141 contributors in the past
month at the time of writing. These contributors
range from professional mathematicians to hobbyists
and everything in between. If you want to contribute,

*The author is an Assistant Professor of Computer Science
at University of Illinois, Urbana-Champaign. Their email ad-
dress is tringer@illinois.edu.

you can, too. This is the beauty of the collision of
the world of proofs with the world of software.

It will take time and patience for this to catch on.
Most mathematicians I have spoken to still view the
proof assistant as making it harder to prove their
results rather than easier. Mathematicians who use
proof assistants still find themselves having to think
hard about details that they often take for granted,
because nothing is really obvious to a computer.
Much of the work being done right now is on build-
ing the infrastructure that will help mathematicians
abstract over those details in the future.

In my research field, our formal proof infrastruc-
ture is mature enough that many of us find it easier
to write a proof in a proof assistant. The proof as-
sistant really assists us. Math will get there too, and
when it does, we will find ourselves in a world where
more and more people can participate in the Great
Conversation of Mathematics.

Proof Assistants

To use a proof assistant, we start by writing defini-
tions directly inside of the proof assistant (or finding
relevant definitions someone else has already writ-
ten). We then state theorems about these definitions.
Finally, we write proofs about these theorems inter-
actively, with the help of the proof assistant.
Suppose we wish to prove that every natural num-
ber is even or odd. We will do so using a popular
proof assistant called Coq. We can get the definitions
of “even” and “odd” from Coq’s standard library:
= dm, n = 2*m.
:=dm, n=2%m + 1.

Definition Even n
Definition 0dd n

We can use these to state our theorem:

Page 1



Proofs and Conversations

To appear in the AMS Early Career Notices in 2024

Theorem even_or_odd:
V (n : nat), Even n \/ 0dd n.

We can then move into the interactive proof mode
by simply typing the word Proof. In this interac-
tive proof mode, next to where we are typing, Coq
displays our current goal to us, which at this point
is just the theorem we stated. To prove this goal,
we send Coq these high-level strategies called tactics.
Here, we can use a tactic that does induction:

induction n.

Coq responds by refining the goal into the base
case and the inductive case. In the base case:

Even 0 \/ 0dd 0

our goal is to show that zero is either even or odd.
Zero is obviously even, but “obviously” does not re-
ally compute. So we provide more detail than we
may be used to. Our goal Even 0 \/ 0dd 0 is a dis-
junction, so first, we tell Coq that we will prove the
disjunction by proving its left side (Even 0). Then,
we explicitly choose 0 for m (there are some ways
around providing this much detail, but they have
many caveats). Then it is obvious. In other words:

- left. exists 0. auto.

Here, 1eft refines the goal to the left side of the dis-
junction, exists 0 chooses 0 for m, and auto takes
care of the “obvious” part.

In the inductive case, our goal is to show that,
given some natural number n, if n is either even or
odd, then so is its successor (denoted S n):

1 goal
n : nat
: Evenn \/ 0dd n

Even (8 n) \/ 0dd (S n)

Note that our inductive hypothesis is given a name,
IHn, which we can refer to explicitly. Here, we call
the destruct tactic on it, which does case analysis,
splitting into the even and odd cases:

- destruct IHn.

In the even case:

1 goal
n : nat

(/1

Even (8 n) \/ 0dd (S n)

we know the successor is odd. But we have to do
more work, again, since this is a computer checking
the result. So after choosing the right side of the
disjunction in the goal (that is, saying the successor
is odd), we use destruct again on H, the fact that n is
even. What this does is use the definition of evenness
to assert that there is some x for which n = 2*m. We
can then use that same exact x to show that S n is
odd by the definition of oddness:

+ right. destruct H. exists x. lia.

where 1ia invokes a simple linear arithmetic solver to
prove the remaining equality in a way that satisfies
Coq. The odd case is fairly similar, and then we are
done, so that our proof looks like this:

Theorem even_or_odd:

¥V (n : nat), Even n \/ 0dd n.
Proof.

induction n.

- left. exists 0. auto.

- destruct IHn.
+ right. destruct H. exists x. lia.
+ left. destruct H. exists (S x). lia.
Qed.

What I call a “proof” here is really a proof script—
a sequence of tactics that proves our goal. But Coq
does not check this proof script directly. Instead, it
translates the whole thing down to this low-level rep-
resentation called a proof term. This proof term is
a purely logical representation of the proof, without
any abstraction, and so it is often quite large. What
is important is that Coq can check this purely logical
proof term against the theorem statement automati-
cally, giving us certainty that it proves that theorem.

While this proof is a toy example, Coq and its sib-
lings like Lean and Isabelle/HOL have been used to
write proofs about both state-of-the-art mathematics
and security-critical software systems.

Page 2



Proofs and Conversations

To appear in the AMS Early Career Notices in 2024

Choosing a Proof Assistant

There are many proof assistants to choose from. Lean
is likely the most popular in mathematics in the US
these days, but I would not let that stop you from
exploring other proof assistants. For example, I use
Coq to write proofs about software and about pro-
gramming languages. I often use a fairly niche proof
assistant called Cubical Agda for higher-dimensional
reasoning, like to reason about homotopies or, more
generally, how proofs themselves relate to each other.

There are many axes along which proof assistants
vary that factor into one’s choice of proof assistant.
Some of these axes relate to the proof assistant’s com-
munity of users: mathematicians versus computer
scientists, means of interacting, axioms communally
agreed upon as OK to assume,'! and style of writ-
ing proofs. Others relate to infrastructure: libraries,
frameworks, automation, user interfaces, languages,
and archives. Still others relate to the guts of the
proof assistants: logical foundations and expressive-
ness, means of achieving trustworthiness, and ways
of representing proofs internally.

Mathematicians I speak to often claim that the
guts of the proof assistant do not matter to them. I
think they do matter, they are just abstracted away.
In fact, the guts are what allow for abstraction to
begin with. For central to these guts is a design prin-
ciple that states that there ought to be separation of
concerns between the thing that produces the proof
and the thing that checks the proof [BB02, BW05].
The thing that checks the proof should be a small,
human-readable logic checker called the kernel. The
thing that produces the proof (like the proof script
we saw earlier) is then free to do pretty much any-
thing, so long as in the end it produces something
that the kernel can check (the corresponding proof
term). This checking happens when we write Qed.

This separation of concerns is what makes the
proof assistant trustworthy while empowering users
to build and use automation that allows for higher
and higher levels of abstraction. Since we can trust
lemmas and theorems once they have been proven, we
can also build on previous results, just like we would

1Yes, this is a thing, and it is one reason many mathemati-
cians tell me they prefer Lean to Coq, even though I love Cogq.

in math. This makes it possible for communities of
users to work in parallel on different proofs, using one
another’s results smoothly. This whole experience
then starts to look a lot like software engineering.

Proof Engineering

The view of writing machine-checkable proofs
through a software engineering lens is called proof en-
gineering [RPS119]. Every aspect of writing formal
proofs, from the community to the infrastructure to
the guts, has parallels in software engineering. This
is good because the software engineering community
has figured out a lot about how to make things easier,
and all of that becomes available to us. For example,
we can use existing systems to track changes to our
work-in-progress proofs with our collaborators, and
we can adapt design principles from software engi-
neering to help us write proofs collaboratively.

The benefits of viewing proofs through a software
engineering lens become especially potent when it
comes to empowering collaboration. One example I
like of this has to do with how I interact with some
of my students—by pair proving. 1 view pair prov-
ing as the proof analogue to pair programming. In
pair programming, the driver writes code while the
navigator helps steer the process and give feedback.
Every so often, programmers switch roles.

When I pair prove with my students, I like to start
as the navigator, and occasionally jump in as driver if
something is easier to show than to explain. My most
useful purpose as navigator is to help students figure
out when to move between bottom-up and top-down
reasoning. Bottom-up reasoning asks: given what we
know, what is it we can show? Top-down reasoning
asks: given what we would like to show, what do we
need to know? Students are often good at both of
these individually, but they tend to get stuck in one
mode of reasoning when switching to the other would
be more effective. As navigator, though, I can help
them figure out when to switch directions. This is
one small way proof engineering helps us collaborate.

Page 3



Proofs and Conversations

To appear in the AMS Early Career Notices in 2024

The Great Conversation

The big promise of proof engineering comes when we
look at collaboration between entire communities all
around the world. Then, we can see the ways these
tools and principles and communities can empower
and enhance the Great Conversation of Mathematics,
or even reduce its barriers to entry.

My favorite example of this came from Terry Tao
when he was learning how to use Lean. He shared
a link to his Lean proofs inside of a GitHub repos-
itory. GitHub repositories are a common way that
people store code that makes it easy to contribute.
Contribution happens by way of something called a
pull request—a collection of changes made locally on
one’s computer that are submitted to the original au-
thors for review and eventual approval. An approved
pull request becomes part of the code.

This is exactly what happened. The pull requests
trickled in immediately, and I found myself in awe. I
realized that, in 2024, anyone in the world can submit
pull requests to collaborate with Terry Tao. He had
spoken to me once about how we had entered this
era of mathematics where collaborating and bridging
fields are valuable skills. Watching Terry’s experi-
ences with Lean, I realized that proof assistants are a
powerful tool in this era of collaboration and bridging
fields. Mathematicians need to know.

In the futuristic world we live in, when you submit
a pull request to Terry Tao’s GitHub repository, you
do not need to worry much about accidentally break-
ing his proofs—no matter who you are. Thanks to
the separation of concerns between proof production
and proof checking, you can just check the revised
proofs locally. If you change the top-level theorem
he is proving or the axioms he relies on, maybe then
you should start to worry. So long as you leave those
in tact, though, you might be able to help him fill in
holes or improve the elegance or clarity of his proof.
To be sure, you can check the result and make sure
it passes Lean’s proof checker. Then you can sub-
mit your pull request and suddenly you are, in some
sense, collaborating with Terry Tao. He and you are
linked in the Great Conversation of Mathematics.

Broadening the Conversation

An even more exciting possibility stems from broad-
ening the very notion of what the Great Conversation
of Mathematics could be—and letting it include com-
puters. Large language models like ChatGPT, for
example, are fundamentally unreliable, but it turns
out this lack of reliability does not matter if we use
the language model to generate formal proofs of the-
orems we have already stated, since the proof assis-
tant’s kernel can check the proof in the end.

Thanks to this certainty, we can start to in-
clude computers at many points of the Great
Conversation—asking and answering questions, help-
ing with discovery, debugging faulty conjectures, dis-
patching proofs of lemmas, finding relevant informa-
tion, discovering connections and analogies and help-
ing you use them for your goals—all without compro-
mising trust. I hope someday this conversation grows
into a computer-aided community of mathematicians
at a scale never before seen, where anyone can partic-
ipate. Of course, the goal should never be to replace
mathematicians—only to empower you all to explore
the world of mathematics more and more, with more
tools at your disposal.

Getting Started

Want to try these proof assistants? There is a large
document full of resources that we recently put to-
gether during the National Academies AI for Math
Seminar.? The tutorials for formal proof listed in that
document, like the Lean Natural Number Game, are
an especially great place to start. The discussion fo-
rums listed, like the Lean Zulip, are indispensable to
new and seasoned proof engineers alike. Be patient—
it may take some time to get used to being explicit
about things that you may take for granted in pen-
and-paper mathematics, or finding the right automa-
tion to help you not need to be explicit about those
things. And above all, do not be afraid to keep asking
questions. People want to help. Enjoy!

2https://docs.google.com/document/d/
1kD7H4E28656ua8j0GZ934nbH2HcBLyxcRgFDdul5iQ0

Page 4


https://docs.google.com/document/d/1kD7H4E28656ua8jOGZ934nbH2HcBLyxcRgFDduH5iQ0
https://docs.google.com/document/d/1kD7H4E28656ua8jOGZ934nbH2HcBLyxcRgFDduH5iQ0

Proofs and Conversations

To appear in the AMS Early Career Notices in 2024

References

[BB02]

[BW05)

[mC20]

[RPS*19]

Henk Barendregt and Erik Barendsen, Autarkic
computations in formal proofs, Journal of Auto-
mated Reasoning 28 (2002), no. 3, 321-336.

Henk Barendregt and Freek Wiedijk, The challenge
of computer mathematics, Philosophical Transac-
tions of the Royal Society of London A: Mathemat-
ical, Physical and Engineering Sciences 363 (2005),
no. 1835, 2351-2375.

The mathlib Community, The lean mathematical
library, Proceedings of the 9th acm sigplan interna-
tional conference on certified programs and proofs,
2020, pp. 367-381.

Talia Ringer, Karl Palmskog, Ilya Sergey, Milos
Gligoric, and Zachary Tatlock, Qed at large: A sur-
vey of engineering of formally verified software,
Found. Trends Program. Lang. 5 (2019sep), no. 2-3,
102-281.

Page 5



